Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 80: 101877, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218538

RESUMEN

OBJECTIVE: Aggregation of human islet amyloid polypeptide (hIAPP), a ß-cell secretory product, leads to islet amyloid deposition, islet inflammation and ß-cell loss in type 2 diabetes (T2D), but the mechanisms that underlie this process are incompletely understood. Receptor interacting protein kinase 3 (RIPK3) is a pro-death signaling molecule that has recently been implicated in amyloid-associated brain pathology and ß-cell cytotoxicity. Here, we evaluated the role of RIPK3 in amyloid-induced ß-cell loss using a humanized mouse model of T2D that expresses hIAPP and is prone to islet amyloid formation. METHODS: We quantified amyloid deposition, cell death and caspase 3/7 activity in islets isolated from WT, Ripk3-/-, hIAPP and hIAPP; Ripk3-/- mice in real time, and evaluated hIAPP-stimulated inflammation in WT and Ripk3-/- bone marrow derived macrophages (BMDMs) in vitro. We also characterized the role of RIPK3 in glucose stimulated insulin secretion (GSIS) in vitro and in vivo. Finally, we examined the role of RIPK3 in high fat diet (HFD)-induced islet amyloid deposition, ß-cell loss and glucose homeostasis in vivo. RESULTS: We found that amyloid-prone hIAPP mouse islets exhibited increased cell death and caspase 3/7 activity compared to amyloid-free WT islets in vitro, and this was associated with increased RIPK3 expression. hIAPP; Ripk3-/- islets were protected from amyloid-induced cell death compared to hIAPP islets in vitro, although amyloid deposition and caspase 3/7 activity were not different between genotypes. We observed that macrophages are a source of Ripk3 expression in isolated islets, and that Ripk3-/- BMDMs were protected from hIAPP-stimulated inflammatory gene expression (Tnf, Il1b, Nos2). Following 52 weeks of HFD feeding, islet amyloid-prone hIAPP mice exhibited impaired glucose tolerance and decreased ß-cell area compared to WT mice in vivo, whereas hIAPP; Ripk3-/- mice were protected from these impairments. CONCLUSIONS: In conclusion, loss of RIPK3 protects from amyloid-induced inflammation and islet cell death in vitro and amyloid-induced ß-cell loss and glucose intolerance in vivo. We propose that therapies targeting RIPK3 may reduce islet inflammation and ß-cell loss and improve glucose homeostasis in the pathogenesis of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Humanos , Ratones , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Caspasa 3/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa , Inflamación , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
2.
Sci Rep ; 13(1): 4019, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899086

RESUMEN

Aberrant expression of xenobiotic metabolism and DNA repair genes is critical to lung cancer pathogenesis. This study aims to identify the cis-regulatory variants of the genes modulating lung cancer risk among tobacco smokers and altering their chemotherapy responses. From a list of 2984 SNVs, prioritization and functional annotation revealed 22 cis-eQTLs of 14 genes within the gene expression-correlated DNase I hypersensitive sites using lung tissue-specific ENCODE, GTEx, Roadmap Epigenomics, and TCGA datasets. The 22 cis-regulatory variants predictably alter the binding of 44 transcription factors (TFs) expressed in lung tissue. Interestingly, 6 reported lung cancer-associated variants were found in linkage disequilibrium (LD) with 5 prioritized cis-eQTLs from our study. A case-control study with 3 promoter cis-eQTLs (p < 0.01) on 101 lung cancer patients and 401 healthy controls from eastern India with confirmed smoking history revealed an association of rs3764821 (ALDH3B1) (OR = 2.53, 95% CI = 1.57-4.07, p = 0.00014) and rs3748523 (RAD52) (OR = 1.69, 95% CI = 1.17-2.47, p = 0.006) with lung cancer risk. The effect of different chemotherapy regimens on the overall survival of lung cancer patients to the associated variants showed that the risk alleles of both variants significantly decreased (p < 0.05) patient survival.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias Pulmonares , Humanos , Fumadores , Estudios de Casos y Controles , Sitios de Carácter Cuantitativo , Neoplasias Pulmonares/genética , Pulmón , Polimorfismo de Nucleótido Simple
3.
Mol Metab ; 65: 101582, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36030035

RESUMEN

OBJECTIVE: Type 1 diabetes (T1D) is characterized by autoimmune-associated ß-cell loss, insulin insufficiency, and hyperglycemia. Although TNFα signaling is associated with ß-cell loss and hyperglycemia in non-obese diabetic mice and human T1D, the molecular mechanisms of ß-cell TNF receptor signaling have not been fully characterized. Based on work in other cell types, we hypothesized that receptor interacting protein kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3) regulate TNFα-induced ß-cell death in concert with caspase activity. METHODS: We evaluated TNFα-induced cell death, caspase activity, and TNF receptor pathway molecule expression in immortalized NIT-1 and INS-1 ß-cell lines and primary mouse islet cells in vitro. Our studies utilized genetic and small molecule approaches to alter RIPK1 and RIPK3 expression and caspase activity to interrogate mechanisms of TNFα-induced ß-cell death. We used the ß-cell toxin streptozotocin (STZ) to determine the susceptibility of Ripk3+/+ and Ripk3-/- mice to hyperglycemia in vivo. RESULTS: Expression of TNF receptor signaling molecules including RIPK1 and RIPK3 was identified in NIT-1 and INS-1 ß cells and isolated mouse islets at the mRNA and protein levels. TNFα treatment increased NIT-1 and INS-1 cell death and caspase activity after 24-48 h, and BV6, a small molecule inhibitor of inhibitor of apoptosis proteins (IAPs) amplified this TNFα-induced cell death. RIPK1 deficient NIT-1 cells were protected from TNFα- and BV6-induced cell death and caspase activation. Interestingly, small molecule inhibition of caspases with zVAD-fmk (zVAD) did not prevent TNFα-induced cell death in either NIT-1 or INS-1 cells. This caspase-independent cell death was increased by BV6 treatment and decreased in RIPK1 deficient NIT-1 cells. RIPK3 deficient NIT-1 cells and RIPK3 kinase inhibitor treated INS-1 cells were protected from TNFα+zVAD-induced cell death, whereas RIPK3 overexpression increased INS-1 cell death and promoted RIPK3 and MLKL interaction under TNFα+zVAD treatment. In mouse islet cells, BV6 or zVAD treatment promoted TNFα-induced cell death, and TNFα+zVAD-induced cell death was blocked by RIPK3 inhibition and in Ripk3-/- islet cells in vitro. Ripk3-/- mice were also protected from STZ-induced hyperglycemia and glucose intolerance in vivo. CONCLUSIONS: RIPK1 and RIPK3 regulate TNFα-induced ß-cell death in concert with caspase activity in immortalized and primary islet ß cells. TNF receptor signaling molecules such as RIPK1 and RIPK3 may represent novel therapeutic targets to promote ß-cell survival and glucose homeostasis in T1D.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglucemia , Insulinas , Animales , Caspasas/metabolismo , Muerte Celular , Glucosa , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Insulinas/metabolismo , Ratones , ARN Mensajero , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Estreptozocina , Factor de Necrosis Tumoral alfa/metabolismo
4.
Metabolites ; 11(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34822454

RESUMEN

ß-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote ß-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, ß-cell loss, and ß-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated ß-cell loss and the roles of autoreactive T cells, B cells, and the ß cell itself in this process. We review discoveries of the molecular mechanisms that underlie ß-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on ß-cell death in diabetes, including: (1) the role of the ß cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of ß-cell death, and (3) whether non-canonical forms of ß-cell death, such as regulated necrosis, contribute to islet inflammation and ß-cell loss in diabetes. We believe new perspectives on the mechanisms of ß-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect ß cells in the setting of diabetes.

5.
PLoS One ; 15(2): e0228657, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32017790

RESUMEN

Plumbagin derived from the plant Plumbago indica, known as Chitrak in India, is an example of a medicinal compound used traditionally to cure a variety of ailments. Previous reports have indicated that it can inhibit the growth of Mycobacterium tuberculosis (Mtb), the causative agent of the deadly disease TB. In this investigation, we provide an insight into its mode of action. We show here that a significant mycobacterial target that is inhibited by plumbagin is the enzyme ThyX, a form of thymidylate synthase, that is responsible for the synthesis of dTMP from dUMP in various bacterial pathogens, including Mtb. Using a purified preparation of the recombinant version of Mtb ThyX, we demonstrate that plumbagin, a 2,4 napthoquinone, but not lawsone, a structurally related medicinal compound, inhibits its activity in vitro. We also show that the intracellular [dTTP]/[dATP] ratio in Mycobacterium smegmatis (Msm) cells decrease upon treatment with plumbagin, and this, in turn, leads to cell death. Such a conclusion is supported by the observation that over-expression of thyx in the plumbagin treated Msm cells leads to the restoration of viability. The results of our investigation indicate that plumbagin kills mycobacterial cells primarily by targeting ThyX, a vital enzyme required for their survival.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Naftoquinonas/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Antituberculosos , Productos Biológicos , Supervivencia Celular/efectos de los fármacos , Nucleótidos de Desoxiadenina/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Naftoquinonas/uso terapéutico , Nucleótidos de Timina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...